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An analytical study of the asymptotic behaviour of descending spikes is carried out
for the idealized limit of an inviscid, incompressible fluid without surface tension,
bounded by a vacuum. A self-similar solution is obtained for the shape of the free
surface at the spike tip, yielding the evolution in time of the surface curvature there.
The approach to free-fall acceleration is shown to follow an inverse power law in time.
Results are given for both planar (two-dimensional) and axisymmetric spikes. Potential
areas of application include ablation-front dynamics in inertial-confinement fusion.

1. Introduction
Despite a long series of impressive studies, described, for example, in the reviews of

Kull (1991) and of Inogamov (1999), numerous questions concerning Rayleigh–Taylor
instability remain unanswered. This is true even for the basic limit of an inviscid,
incompressible fluid above a vacuum, with a tensionless interface at zero pressure.
In that limit, there are solutions in which nonlinear growth of the initial instability
results in the unsteady, periodic, symmetric pattern illustrated in figure 1. Bubbles,
rising at an almost constant velocity, are separated by downward-moving spikes (also
called fingers or jets) descending at a nearly constant acceleration, approaching that
of free fall under the imposed external force. The dynamics of a single bubble is
relatively well understood, thanks to the pioneering work of Rayleigh (1900), Taylor
(1950) and Layzer (1955), based on a single-mode approximation of the flow at its tip,
and to the more recent studies of Abarzhi (1998), Mikaelian (1998), Zhang (1998),
Goncharov (2002) and Abarzhi, Nishihihara & Glimm (2003). Much less is known
about the spikes, for which the dynamical system obtained with a single-mode approxi-
mation does not provide an accurate framework for describing the asymptotic
dynamics (Inogamov 1999, p. 84). It is an open question as to whether finite-time
singularities, dependent on the initial conditions, develop at or near the tip of the
spike – a question recently addressed by conformal mapping, an approach used by
Tanveer (1993) and Yoshikawa & Balk (2003), and references quoted therein.

The present paper offers a local asymptotic analysis of the spikes, based on hypo-
theses of regularity and small departures from free fall, intended to provide a frame-
work for future computational and experimental tests. The computational tests can be
performed by accurate numerical methods, such as integral methods (L. Duchemin &
C. Josserand 2004, personal communication) and vortex-blob methods (Baker &
Beale 2004). A motivation arises from interest in instabilities of ablation fronts in the
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Figure 1. Schematic diagram of the model.

limits of small ablation velocity and large density ratio (see Appendix A). Although
weak in comparison with Rayleigh–Taylor instability, ablation is expected to have
a large effect on the thin elongated spikes. A preliminary step is thus to know in
sufficient detail what is the asymptotic behaviour of the spikes in the idealized model
without ablation. This is the purpose of the present analytical study, the result of
which cannot immediately be generalized to the ablation problem but instead can
provide background understanding that could be helpful in addressing the ablation
problem.

The problem is formulated in § 2. The basic approximation and the perturbation
methods are then presented in § 3, and the long-time asymptotic behaviour of the
curvature at the tip of the spike is derived in § 4, including a self-similar solution
for the equation of the free surface near the tip. Arguments are also presented here
against the formation of singularities for most initial conditions. The way that the
free-fall acceleration is approached is presented § 5, and § 6 is devoted to a short
discussion of the results.

2. Formulation
The planar, two-dimensional coordinate system is illustrated in figure 1. The con-

stant gravitational acceleration, of magnitude g, is directed downward, in the positive
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x-direction. The origin of the transverse coordinate y in the inertial frame is placed
along a vertical line that passes through the tip of a spike, so that the interface
and the flow field are symmetrical in y. The axisymmetric spike may be addressed
similarly, replacing y by the radius. The fluid, inviscid and with zero surface tension,
is taken to be incompressible (an approximation of low Mach number), of density
ρ, with x and y velocity components u and v, respectively. If p denotes the pressure
divided by ρ, then the Euler equations for an irrotational flow can be written as

∂

∂x
u +

∂

∂y
v = 0, (2.1)

∂

∂t
u = − ∂

∂x
[p − gx + (u2 + v2)/2], (2.2)

∂

∂t
v = − ∂

∂y
[p − gx + (u2 + v2)/2]. (2.3)

Since the irrotational flow is potential, the velocity vector can be expressed as

(u, v) = −∇Φ (2.4)

with ∇2Φ = 0. The Bernoulli equation is then

∂Φ/∂t = p − gx + (u2 + v2)/2 + C(t), (2.5)

where C(t) is a function of time.
The problem is a free-boundary problem, with the fluid occupying the region

x � α(y, t), where the equation defining the location of the free surface is x = α(y, t).
Initial conditions must be given if a unique solution is to be determined, and the
boundary conditions far from the interface are taken to be that the fluid is at rest at
infinity,

u = ∂Φ/∂x → 0 and v = ∂Φ/∂y → 0 as x → −∞. (2.6)

The zero-pressure boundary condition (p = 0) at the interface, x =α(y, t), yields

∂Φ/∂t |x=α = −gα + (u2|x=α + v2|x=α)/2 + C(t), (2.7)

from (2.5). There is, in addition, a kinematic condition at the interface, stating that
the boundary is moving with the fluid, namely,

∂α/∂t = u|x=α − v|x=α∂α/∂y. (2.8)

3. Basic assumptions and perturbation method
It is assumed that the asymptotic flow at long time near the spikes corresponds to

approximately steady, parallel free fall, so that

u∂u/∂x ≈ g, (3.1)

leading to

u ≈
√

2gx, (3.2)

valid near the tip of the spike. The position of the tip is then described approximately
by

x ≡ xs(t) ≈ gt2/2, (3.3)
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for a suitable choice of the origin of time and space. The general expression for the
vertically downward component of velocity is written as

u =
√

2(gx + f ), (3.4)

and the perturbation analysis will be based on the assumptions

|f (x, y, t)| � gx, |∂f (x, y, t)/∂x| � g, |∂f (x, y, t)/∂t | � ug, (3.5)

to be verified a posteriori for self-consistency in a later section. In addition, the flow has
been taken to be irrotational, and the perturbation f will be assumed to be analytic.
The time-dependent ratio |f (xs, 0, t)|/(gxs) can be viewed as the small parameter of
expansion of the perturbation analysis. The analysis is carried only to first order in
this parameter, which is small at long time.

4. Leading order for the spike asymptotics
The incompressibility condition may be applied to the spike in figure 1 with its tip

at y = 0. Equations (2.1) and (3.2) thereby give

−∂v/∂y = ∂u/∂x ≈
√

g/2

x1/2
. (4.1)

In view of the symmetry boundary condition that v = 0 at y = 0, it follows from (4.1)
that

v ≈ −
√

g/2
y

x1/2
. (4.2)

At the leading order, (2.8), (3.2) and (4.2) provide an equation for the free interface,
namely

1√
2g

∂

∂t
α = α1/2 +

1

2α1/2

(
y

∂

∂y
α

)
, (4.3)

which may be written, after dividing by α1/2, as√
2

g

∂α1/2

∂t
= 1 +

y

α1/2

∂α1/2

∂y
. (4.4)

It is convenient to introduce the function

z(y, t) ≡ t − α1/2
√

(2/g), (4.5)

which is, by definition, a function increasing with |y|, satisfying z < t . Equation (4.4)
then yields

∂z

∂t
− y

t − z

∂z

∂y
= 0. (4.6)

Since the approximations (3.2) and (4.2) are expected to be valid not too far from the
tip of the spike, the physically relevant condition for the present analysis is

z � t. (4.7)

General solutions to (4.6) can be addressed by the method of characteristics. For
an initial condition z(y, t0) ≡ z0(y) < t0, z(y, t) remains constant on the characteristic
curves, which then turn out to be given exactly by

y = y0

[t0 − z0(y0)]

[t − z0(y0)]
, z(y, t) = z0(y0). (4.8)
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Figure 2. (y, t)-diagram for the characteristic base curves from equation (4.8).

Equation (4.8) describes hyperbolas in the (y, t)-diagram for the characteristic base
curves, as illustrated in figure 2. These curves do not cross each other in finite time for
most functions z0(y0); they can cross for t > t0 only if dz0/dy0 becomes sufficiently large
in some range of y0, which is not likely, as discussed more fully in the Appendix B.
It follows that typically no singularity appears on the interface for t � t0 if there
is none in the initial condition z0(y0). The developments in the present paper are
restricted to conditions under which the characteristics base curves do not cross and
there are no singularities near the tip.

For z � t , there is a self-similar solution to (4.6) of the form

z(y, t) = θ(yt), (4.9)

where θ is an arbitrary differentiable function. This type of solution can describe
the evolution of the curvature of the free surface at the tip of the spike. From
equation (4.5), which can be written as α = (t − z)2(g/2), it can be seen that for
small z(z � t) the dominant term of (gt2/2) − α(y, t) is gtz(y, t). The expansion of
(4.9) around y = 0, namely z(y, t) ≈ (yt)2θ ′′(0)/2, then shows that the curvature of the
spike, κs ≡ −∂2α/∂y2|y=0(κs > 0) increases with time like t3,

κs ≈ gt3θ ′′(0). (4.10)

In cylindrical geometry, with y representing the radial distance from the axis of sym-
metry, a similar approach shows that the equation of the surface near the tip of the
spike takes the form α = gt2/2 − gtθ(y

√
t) since a factor of 2 then multiplies ∂z/∂t

in (4.6), leading to z(y, t) = θ(y
√

t) as the self-similar solution; the resulting mean
curvature increases with time like t2,

κs ≈ gt2θ ′′(0). (4.11)

The value of the constant θ ′′(0) must depend on the initial conditions. The present
analysis addresses conditions under which θ ′′(0) is positive and does not consider
possible variations of θ ′′(0) with time, which may occur at higher order.
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Equation (4.4) possesses formal solutions of the form

α1/2 = t
√

g/2 + φ
(
yα1/2

)
(4.12)

for any differentiable function φ. This implies that, when y is expressed in terms of
x and t at the surface, |y| =β(x, t), the asymptotic equation for the free surface near
the tip of the spike can be written as

β2 =
χ

(
x1/2

s − x1/2
)

x
with xs(t) = gt2/2, (4.13)

where the function χ =(φ−1)2 is determined by the initial conditions, φ−1 here denoting
the inverse of the function φ.

5. First-order perturbation analysis
In anticipation that the flow is not singular on the symmetry axis y = 0, and under

the assumption that the flow can be described by analytic functions in the vicinity of
the tip, a power series for f (x, y, t) in (3.4) may be introduced in the form

f = f0(x, t) + fyy(x, t)y2/2 + . . . (5.1)

with

f0(x, t) � gx, ∂f0(x, t)/∂x � g. (5.2)

The expansion of equation (3.4) then can be expressed as

u = [
√

2gx + F ] + (y2/2)G + . . . (5.3)

where, F (x, t) ≡ f0/
√

2gx, G(x, t) ≡ fyy/
√

2gx. The incompressibility condition (2.1)
and the symmetry boundary condition that v = 0 at y = 0 then give

v = −[
√

g/2x + ∂F/∂x]y − (y3/3!)∂G/∂x + . . . . (5.4)

The second term inside the brackets in (5.3) and (5.4) is smaller than the first in
this perturbation analysis. The power series of the velocity potential of (2.4) may be
obtained from (5.3) and (5.4) in the form

Φ = −
∫ x

[
√

2gx ′ + F (x ′, t)] dx ′ − (y2/2)

∫ x

G(x ′, t) dx ′ + (y4/4!)∂G/∂x + . . . (5.5)

with the compatibility condition
∫ x

G(x ′, t) dx ′ = −
√

g/2x − ∂F/∂x, yielding√
2gxG = fyy = g/2x −

√
2gx(∂2F/∂x2), (5.6)

so that the only unknown that remains in (5.5) is F , equivalent to f0(x, t) being the
only unknown.

According to (5.3), (5.4) and (5.6), in (2.2), (2.3) and (2.5)

(u2 + v2)/2 − gx =
√

2gxF +
[
(g/x) −

√
2gx(∂2F/∂x2) +

√
2g(∂F/∂x)/x1/2

]
y2/2 + . . . ,

(5.7)

where the last two terms inside the brackets are smaller than the first. Use of (5.3),
(5.4), (5.6) and (5.7) in (2.2) and (2.3) then readily gives

∂

∂t
F −

(
y2

2

)
∂2

∂x2

(
∂

∂t
F

)
≈ − ∂

∂x

[
p +

√
2gxF +

(
y2

2

)
g

x

]
, (5.8)

−y
∂

∂x

(
∂

∂t
F

)
≈ − ∂

∂y

[
p +

√
2gxF +

(
y2

2

)
g

x

]
. (5.9)



Spike evolution in Rayleigh–Taylor instability 111

The pressure may be calculated from these results by first integrating (5.8) from
x = xs , where p = 0, to an arbitrary value of x, then integrating (5.9) from zero to y

at this value of x. The result is

p(x, y, t) =
√

2gxsF (xs, t) −
√

2gxF (x, t) +

∫ xs

x

(∂F (x ′, t)/∂t) dx ′

− [g/x − ∂2F (x, t)/∂t ∂x](y2/2) + . . . . (5.10)

If the equation for the free surface is now written as

|y| = β(x, t), (5.11)

then imposing the zero-pressure condition there in (5.10) leads to the equation√
2gxsF (xs, t) −

√
2gxF (x, t) +

∫ xs

x

(∂F (x ′, t)/∂t) dx ′=[g/x−∂2F (x, t)/∂t∂x]β2/2,

(5.12)

which is equivalent to the corresponding condition (2.7) that is obtained from the
Bernoulli equation (2.5). Equation (5.12) can be viewed as an integrodifferential
equation for f0(x, t) =

√
2gxF (x, t), given xs and β , or simply as a partial differential

equation for
∫ xs

x
F (x ′, t) dx ′.

The derivative of (5.12) with respect to x evaluated at x = xs , where β = 0, leads to

(
√

2gxs)∂f0/∂x|x=xs
+ ∂f0/∂t |x=xs

≈
(√

2g3/2
/
κsx

1/2
s

)
, (5.13)

since ∂(β2/2)∂x|x=xs
= −1/κs , according to the definition of the curvature, and (1/κs)

[∂(∂F/∂t)/∂x]|x=xs
is negligible in comparison with (∂F/∂t)x=xs

because the charac-
teristic length of variation of (∂F/∂t)x=xs

is much larger than 1/κs . Equations (2.8)
and (5.3) evaluated at y = 0 yield the two-term expansion

dxs/dt =
√

2gxs + [f0(xs, t)/
√

2gxs] + . . . , (5.14)

which enables (5.13) to be written as

d

dt
f0(xs, t) ≈

√
2g3/2

κs(t)
√

xs(t)
+ . . . (5.15)

at leading order, since the last term in (5.14) is small. Equation (5.15) confirms that
the perturbation parameter |f (xs, 0, t)|/(gxs) is small in the long-time limit.

Equations (5.14) and (5.15) describe how the acceleration of the spike approaches
g. The time derivative of (5.14) can be written in a two-term expansion as

d2xs

dt2
= g +

df0/dt

dxs/dt
, (5.16)

and (5.15) may be substituted into this expression to show, using (3.3) and (4.10), that

d2xs

dt2
− g ≈ 2

gθ ′′(0)t5
. (5.17)

A similar analysis in cylindrical geometry, which requires using (4.11) instead of
(4.10), leads to

d2xs

dt2
− g =

3

2gθ ′′(0)t4
. (5.18)
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The result in (5.15) shows from (3.3) and (4.10) that df0/dt is proportional to 1/t4

for large time, so that according to (3.3), (3.4) and (5.14), the basic assumptions in
(3.5) are self-consistent, provided that the order of magnitude of each term on the
left-hand side of (5.13) is not larger than the right-hand side. The approach to free fall
is seen from (5.17) and (5.18) to occur from above, that is, the acceleration of the tip
must always overshoot then approach free fall from above.

6. Discussion of the results
Based on the assumption that the asymptotic flow field near the tip of the spike

is close to that imposed by free fall, power laws in time for the evolution at long
time of the curvature and of the acceleration of the tip have been obtained here.
A self-similar equation for the shape of the free surface near the tip also has been
derived. It has been established that, in the long-time limit, no singularity can appear
at a finite time near the tip unless the initial conditions are unusual in the sense
that they possess singularities or exhibit an excessively steep interface far from the
tip. Although formation of finite-time singularities may be possible at intermediate
time and away from the tip, that appears not very likely for periodic and symmetric
initial conditions, as is being confirmed by accurate direct numerical simulations,
the most recent by L. Duchemin & C. Josserand (2004, personal communication),
based on an integral method. None of the results presented here are compatible with
a single-mode Fourier-decomposition approximation, which works so well for the
bubble. The failure of this approach for the spike is associated with the free-fall
spatial dependence of the flow.

Appendix A. Relationship to inertial-confinement instabilities
The study is motivated by the hydrodynamic instabilities of ablation fronts in

inertial-confinement fusion. There are two reasons for potential relevance to this
problem. First, the acceleration is very strong (Froude number of order unity) and the
density jump across the ablation front is very large (Atwood number close to unity),
so that the ablation, as studied by the model of Clavin & Masse (2004), is, in a sense,
a weak perturbation to this Rayleigh–Taylor instability. Second, as in flames (see for
example the book of Williams (1985), and the review paper of Clavin (2000)), the
ablation introduces a constraint, imposing conservation of the tangential flow velocity
component across the front, so that the secondary instability of the Kelvin–Helmholtz
type, leading to the ‘roll-up’ or ‘mushroom’ structures observed in Rayleigh–Taylor
instability for non-unity Atwood number, will tend to be suppressed, as it is for unity
Atwood number.

Appendix B. Possibilities for development of singularities
Finite-time singularities in the flow will arise if the characteristic base curves defined

by equation (4.8) cross for t > t0. This depends on the function z0(y0) which must
be non-decreasing with increasing |y0| but remain less than t0. By considering two
different characteristic curves, one with the initial value y01 > 0 and the other with
the initial value y02 > y01, it can be shown that these two characteristics cross only if

[y02z0(y02) − y01z0(y01)]/t0 � y02 − y01. (B 1)

From this it follows that, if y01 and y02 are sufficiently close together, then the
condition that must be satisfied for the characteristic curves not to cross is

d(y0z0)/dy0 < t0 (B 2)
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for all y0, with the given initial profile z0(y0). This condition is also sufficient in the
range of the present analysis, z0 � t0.

Equation (B2) is always satisfied on the plane or axis of symmetry, y0 = 0, because
of the requirement that z0 < t0. Therefore if characteristic curves do cross, leading to
a singularity, that event must occur away from the tip of the spike, on its side. It
can be seen by an example that in the range of validity of the analysis in this paper,
which is an expansion about the tip for large time, (B2) is satisfied. Suppose that
z0(y0) is parabolic, say z0 = cy2

0 , with c a constant. Then (B2) requires 3cy2
0 < t0, which

is 3z0 < t0, a condition that is satisfied by the requirement z0 � t0 of the analysis.
Equation (B2) is satisfied by the initial conditions of the original problem, z0(y0) = 0,

with t0 = 0, and the small-time development will not change that, but evolution at
intermediate times could violate (B2). Beyond the range of validity of the perturbation
analysis, computations suggest that the tail of the spike becomes essentially straight,
z0 = b(y0 − a), where a and b are constant, a being of the order of the radius of
curvature of the tip. In this case (B2) is b (2y0 − a) = 2z0 + ab < t0, which can be
violated only if ab is sufficiently large. Part of the sides of the spike initially must
be very steep for a singularity to develop, which is difficult to achieve in view of
the general requirement that z0 < t0. If for particular initial conditions finite-time
singularities were to develop, they could conceivably propagate to y = 0 and thereby
override the present analysis.

This work was supported by CEA/DIP through grant 4600051147/P6H29 and by
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